Thimerosal is an organic mercurial compound used as a preservative in biomedical preparations. Little is known about the reactions of human neuronal and skin cells to its micro- and nanomolar concentrations, which can occur after using thimerosal-containing products. A useful combination of fluorescent techniques for the assessment of thimerosal toxicity is introduced. Short-term thimerosal toxicity was investigated in cultured human cerebral cortical neurons and in normal human fibroblasts. Cells were incubated with 125-nM to 250-μM concentrations of thimerosal for 45 min to 24 h. A 4′, 6-diamidino-2-phenylindole dihydrochloride (DAPI) dye exclusion test was used to identify nonviable cells and terminal transferase-based nick-end labeling (TUNEL) to label DNA damage. Detection of active caspase-3 was performed in live cell cultures using a cell-permeable fluorescent caspase inhibitor. The morphology of fluorescently labeled nuclei was analyzed. After 6 h of incubation, the thimerosal toxicity was observed at 2 μM based on the manual detection of the fluorescent attached cells and at a 1-μM level with the more sensitive GENios Plus Multi-Detection Microplate Reader with Enhanced Fluorescence. The lower limit did not change after 24 h of incubation. Cortical neurons demonstrated higher sensitivity to thimerosal compared to fibroblasts. The first sign of toxicity was an increase in membrane permeability to DAPI after 2 h of incubation with 250 μM thimerosal. A 6-h incubation resulted in failure to exclude DAPI, generation of DNA breaks, caspase-3 activation, and development of morphological signs of apoptosis. We demonstrate that thimerosal in micromolar concentrations rapidly induce membrane and DNA damage and initiate caspase-3–dependent apoptosis in human neurons and fibroblasts. We conclude that a proposed combination of fluorescent techniques can be useful in analyzing the toxicity of thimerosal.

Key Words: thimerosal; active caspase-3; apoptosis; toxicity; neurons; fibroblasts; DNA breaks; membrane damage; DAPI.