Autism: a novel form of mercury poisoning

S. Bernard, A. Enayati, L. Redwood, H. Roger, T. Binstock
ARC Research, Cranford, New Jersey, USA

Summary Autism is a syndrome characterized by impairments in social relatedness and communication, repetitive behaviors, abnormal movements, and sensory dysfunction. Recent epidemiological studies suggest that autism may affect 1 in 150 US children. Exposure to mercury can cause immune, sensory, neurological, motor, and behavioral dysfunctions similar to traits defining or associated with autism, and the similarities extend to neuroanatomy, neurotransmitters, and biochemistry. Thimerosal, a preservative added to many vaccines, has become a major source of mercury in children who, within their first two years, may have received a quantity of mercury that exceeds safety guidelines. A review of medical literature and US government data suggests that: (i) many cases of idiopathic autism are induced by early mercury exposure from thimerosal; (ii) this type of autism represents an unrecognized mercurial syndrome; and (iii) genetic and non-genetic factors establish a predisposition whereby thimerosal’s adverse effects occur only in some children. © 2001 Harcourt Publishers Ltd

INTRODUCTION

Austic spectrum disorder (ASD) is a neurodevelopmental syndrome with onset prior to age 36 months. Diagnostic criteria consist of impairments in sociality and communication plus repetitive and stereotypic behaviors (1). Traits strongly associated with autism include movement disorders and sensory dysfunctions (2). Although autism may be apparent soon after birth, most autistic children experience at least several months, even a year or more of normal development – followed by regression, defined as loss of function or failure to progress (2–4).

The neurotoxicity of mercury (Hg) has long been recognized (5). Primary data derive from victims of contaminated fish (Japan – Minamata disease) or grain (Iraq, Guatemala, Russia); from acrodynia (Pink disease) induced by Hg in teething powders; and from individual instances of mercury poisoning (HgP), many occurring in occupational settings (e.g. Mad Hatter’s disease). Animal and in vitro studies also provide insights into the mechanisms of Hg toxicity. More recently, the Food and Drug Administration (FDA) and the American Academy of Pediatrics (AAP) have determined that the typical amount of Hg injected into infants and toddlers via childhood immunizations has exceeded government safety guidelines on an individual (6) and cumulative vaccine basis (7). The mercury in vaccines derives from thimerosal (TMS), a preservative which is 49.6% ethylmercury (eHg) (7).

Past cases of HgP have presented with much interindividual variation, depending on the dose, type of mercury, method of administration, duration of exposure, and individual sensitivity. Thus, while commonalities exist across the various instances of HgP, each set of variables has given rise to a different disease manifestation (8–11). It is hypothesized that the regressive form of autism represents another form of mercury poisoning, based on a thorough correspondence between autistic and HgP traits and physiological abnormalities, as well as on the known exposure to mercury through vaccines. Furthermore, other phenomena are consistent with a causal Hg-ASD relationship. These include: (a) symptom onset shortly after immunization; (b) ASD prevalence increases corresponding to vaccination increases; (c) similar sex ratios of affected individuals; (d) a high heritability rate for autism paralleling a genetic predisposition to