Purified Reconstituted Inositol 1,4,5-Trisphosphate Receptors

THIOL REAGENTS ACT DIRECTLY ON RECEPTOR PROTEIN*

(Received for publication, March 18, 1994, and in revised form, August 15, 1994)

Adam I. Kaplin, Christopher D. Ferris, Susan M. Voglmaier, and Solomon H. Snyder‡

From the Departments of Neuroscience, Pharmacology and Molecular Sciences, Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Thimerosal, a sulfhydryl oxidizing reagent, has been shown to induce Ca2+ mobilization in several cell types and to increase the sensitivity of intracellular Ca2+ stores to inositol 1,4,5-trisphosphate (IP\textsubscript{3}). Using purified IP\textsubscript{3} receptor (IP\textsubscript{R}) protein reconstituted in vesicles, we demonstrate pronounced stimulation by thimerosal of its Ca2+ channel activity. Effects of thimerosal are dependent on the redox state of the receptor, implying an action of thimerosal on a critical sulfhydryl group(s) of IP\textsubscript{R}. Thimerosal enhances the affinity of IP\textsubscript{R} for IP\textsubscript{3}, binding. The manner in which thimerosal modulates IP\textsubscript{R} responsiveness to IP\textsubscript{3} provides evidence for receptor heterogeneity with implications for mechanisms of quantal Ca2+ release. These results clarify regulation of IP\textsubscript{R} activity by redox modulation.

The dynamics of intracellular Ca2+ provide crucial signaling information in many aspects of cellular regulation. Intracellular Ca2+ flux is regulated by numerous processes, especially the release of Ca2+ from intracellular stores by inositol 1,4,5-trisphosphate (IP\textsubscript{3}). Utilizing IP\textsubscript{3} receptor (IP\textsubscript{R}) reconstituted in proteoliposomes, we previously showed that quantal flux of Ca2+ elicited by IP\textsubscript{3} is a fundamental property of the IP\textsubscript{R}, suggesting that the receptors purified from rat cerebellum constitute a heterogeneous population with varying sensitivity to IP\textsubscript{3}. These effects of thiol reagents on IP\textsubscript{3} mediated flux in IP\textsubscript{R} vesicles observed here provide additional evidence for functional receptor heterogeneity, which may help account for quantal Ca2+ release.

EXPERIMENTAL PROCEDURES

Materials—[\(^3\)H]IP\textsubscript{3}, Ca2+, and formula 963 scintillation mixture were obtained from DuPont NEN. D-myoinositol, 1,4,5-trisphosphate; TMS, hexapotassium salt was obtained from LC Laboratories (Woburn, MA). Concanavalin A-Sepharose and G-25, superfine, were obtained from Pharmacia LKB Biotechnology Inc. Phospholipids for reconstitution were obtained from Avanti Polar Lipids (Birmingham, AL). All other reagents were from Sigma.

Purification and Reconstitution of IP\textsubscript{R}—IP\textsubscript{R} was purified from adult male Sprague-Dawley rat cerebellum and reconstituted into lipid vesicles as described (17). Briefly, IP\textsubscript{R} was purified using a two-step affinity chromatography procedure employing sequential heparin-Agarose and concanavalin A-Sepharose columns. Following purification to apparent homogeneity, detergent-activated receptor protein was mixed with sonicated lipids and the mixture was dialyzed against buffer A (50 mM NaCl, 50 mM KCl, 20 mM Tris-HCl, pH 7.4), supplemented with 2.5 mM B-mercaptoethanol (BME) and 5 mM EDTA, to effect detergent removal and vesicle formation. The buffer was changed every 8 h for 48 h, and EDTA was omitted from the final buffer change. For experiments performed in the absence of reducing agent, 1 mM IP\textsubscript{R} was passed over a 5 ml G-25 desalting column equilibrated with buffer A to remove BME.

[\(^6\)Ca2+] Flux—Reconstituted proteoliposomes were assayed for IP\textsubscript{3} stimulated [\(^6\)Ca2+] flux as described (17). Following preincubation under various conditions vesicles were incubated (for either 10 or 15 s) in the presence of [\(^6\)Ca2+] with or without IP\textsubscript{R}. Under these conditions, tracer [\(^6\)Ca2+] gained access to the lumen of vesicles when the IP\textsubscript{R} channels were opened by IP\textsubscript{3}. The flux reaction was stopped by the addition of excess buffer containing unlabeled divalent cations and heparin (200 μg/ml). Intravesicular [\(^6\)Ca2+] content was isolated by immediately passing the vesicle/buffer mixture over a cation-exchange column (Dowex 50W, Sigma). The vesicles were collected and their intravesicular [\(^6\)Ca2+] content was measured by scintillation spectrometry.

RESULTS

Several workers have shown TMS stimulation of Ca2+ flux in intact cells and platelets (14, 15, 24–29) and enhancement of