Toxicity biomarkers among US children compared to a similar cohort in France: a blinded study measuring urinary porphyrins

Janet K. Kernabc*, David A. Geierd, Françoise Ayzace, James B. Adamsf, Jyutika A. Mehtag and Mark R. Geierh

aGenetic Consultants of Dallas, 408 North Allen Drive, Allen, TX 75013, USA; bAutism Treatment Center, 10503 Metric Drive, Dallas, TX 75243, USA; cUniversity of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; dCoMeD, Inc. and Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD 20905, USA; eAutism Research Institute, 4182 Adams Avenue, San Diego, CA 92116, USA; fDepartment of Chemical and Materials Engineering, Arizona State University, 7001 East Williams Field Road, Mesa, AZ 85212, USA; gDepartment of Communication Sciences and Disorders, Texas Woman’s University, 304 Administration Drive, Denton, Texas 76204, USA; hAutism Spectrum Disorder Centers, LLC, 14 Redgate Court, Silver Spring, MD 20905, USA

(Received 29 May 2010; final version received 5 July 2010)

The purpose of this blinded study was to evaluate potential environmental toxicity in a cohort of neurotypical children ($n = 28$) living in a suburban area of north-central Texas in the United States (US) with a comparable age- and gender-matched cohort of neurotypical children ($n = 28$) living in a suburban area of southeastern France using urinary porphyrin testing: uroporphyrin (uP), heptacarboxyporphyrin (7cxP), hexacarboxyporphyrin (6cxP), pentacarboxyporphyrin (5cxP), precoproporphyrin (prcP), and coproporphyrin (cP). Results showed significantly elevated 6cxP, prcP (an atypical, mercury-specific porphyrin), and cP levels, and increasing trends in 5cxP levels, among neurotypical children in the USA compared to children in France. Data suggest that in US neurotypical children, there is a significantly increased body-burden of mercury (Hg) compared to the body-burden of Hg in the matched neurotypical children in France. The presence of lead contributing to the higher levels of cP also needs to be considered. Further, other factors including genetics can not be completely ruled out.

Keywords: mercury; heavy metal; porphyrins; biomarkers; xenobiotic; lead; toxicity

Introduction

For many years, measuring heavy metal toxicity in children involved a direct measure of the metals in the blood, urine, hair, or fecal matter. A more recent approach is to use urinary porphyrins as a measure of toxic metal body-burden. Previous studies showed that urinary porphyrins (heme precursors formed in the heme synthesis pathway) afford a measure of xenobiotic exposure, particularly mercury (Hg) (Woods 1996; Pingree et al. 2001a; Pingree, Simmonds, and Woods 2001b). Specific patterns of porphyrins suggest the presence of Hg exposure. Mercury toxicity was demonstrated to be associated with...