Determination of Methylmercury, Ethylmercury, and Inorganic Mercury in Mouse Tissues, Following Administration of Thimerosal, by Species-Specific Isotope Dilution GC–Inductively Coupled Plasma-MS

Johanna Qvarnström,*¹ Lars Lambertsson,¹,⁴ Said Havarinasab,⁵ Per Hultman,⁵ and Wolfgang Frech†

Analytical Chemistry, Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden, Umeå Marine Sciences Centre, Umeå University, S-910 20 Hörnefors, Sweden, and Molecular and Immunological Pathology (AIR), Department of Molecular and Clinical Medicine, Linköping University, S-581 85 Linköping, Sweden

Isotopically enriched HgO standards were used to synthesize CH₃₂⁰⁰Hg⁺ and C₂H₅¹⁹⁹Hg⁺ using Grignard reagents. These species were employed for isotope dilution GC–ICPMS to study uptake and biotransformation of ethylmercury in mice treated with thimerosal, (sodium ethylmercurithiosalicylate) 10 mg L⁻¹ in drinking water ad libitum for 1, 2.5, 6, or 14 days. Prior to analysis, samples were spiked with aqueous solutions of CH₃²⁰⁰Hg⁺, Hg²⁺, C₂H₅¹⁹⁹Hg⁺, and ²⁰ⁱHg²⁺ and then digested in 20% tetramethylammonium hydroxide and extracted at pH 9 with DDTC/toluene. Extracted mercury species were reacted with butylmagnesium chloride to form butylated derivatives. Absolute detection limits for CH₃Hg⁺, C₂H₅Hg⁺, and Hg²⁺ were 0.4, 0.2, and 0.6 pg on the basis of 3σ of five separate blanks. Up to 9% of the C₂H₅Hg⁺ was decomposed to Hg²⁺ during sample preparation, and it is therefore crucial to use a species-specific internal standard when determining ethylmercury. No demethylation, methylation, or ethylation during sample preparation was detected. The ethylmercury component of thimerosal was rapidly taken up in the organs of the mice (kidney, liver, and mesenterial lymph nodes), and concentrations of C₂H₅Hg⁺ as well as Hg²⁺ increased over the 14 days of thimerosal treatment. This shows that C₂H₅Hg⁺ in mice to a large degree is degraded to Hg²⁺. Increased concentrations of CH₃Hg⁺ were also observed, which was found to be due to impurities in the thimerosal.

The difference in toxicity of various mercury species¹ makes it important to determine the atomic and molecular forms of mercury in tissues after acute and chronic exposure. Since organic mercury compounds might be transformed to Hg²⁺ in the tissues, it is of interest to study the temporal aspects of transport and transformation of various mercury species.

Organic mercury compounds, primarily CH₃Hg⁺ and C₂H₅Hg⁺, were introduced as agricultural fungicides at the beginning of the 20th century, but after a series of accidental mercury poisonings with fatal outcome¹ and evidence of environmental hazards,³ alkylmercury compounds were discontinued for agricultural use. Paradoxically, until recently, C₂H₅Hg⁺ in the form of thimerosal (sodium ethylmercurithiosalicylate) was added (0.003–0.01%) to several medical preparations for antimicrobial purposes.⁴ Then in 1999, the U.S. Public Health Service (USPHS) and the American Academy of Pediatrics (AAP) issued a joint statement⁵ in which they identified thimerosal as a widespread source of organic mercury exposure in infants/small children and recommended that it should be reduced or eliminated from childhood vaccines. It has been estimated that an infant might be exposed to ~200 μg of Hg (as C₂H₅Hg⁺) during the first 6 months of life through vaccinations.⁴ The effect of childhood C₂H₅Hg⁺ exposure has not been systematically studied, but the qualitative effect is thought to be similar to that of methylmercury, which in sufficient doses causes widespread damage to the developing central nervous system.⁶ Recently, the Immunization Safety Review Committee of the U.S. Institute of Medicine stated that the hypothesis⁷ that exposure to thimerosal-containing vaccines is associated with

¹ To whom correspondence should be addressed. E-mail: johanna.qvarnstrom@chem.umu.se.
² Department of Chemistry, Umeå University.
³ Umeå Marine Sciences Centre, Umeå University.
⁴ Linköping University.

Published on Web 07/11/2003
4120 Analytical Chemistry, Vol. 75, No. 16, August 15, 2003 10.1021/ac0342370 CCC: $25.00 © 2003 American Chemical Society